Using Requests
Using Requests
pip install memvectordb-python
To Initialize the Client
from memvectordb.collection import Collection
client = MemVectorDB(base_url = "base-url") # default http://127.0.0.1:8000
To Create Collection
# To create a new collection
collection_name = "collection_name"
dimension = "dimension-of-vectors-to-be-stored"
distance = "distance-metric" # either 'cosine', 'euclidean' or 'dot'
collection = client.create_collection(collection_name, dimension, distance)
To Get Collection
collection_name = "collection_name"
collection = client.get_collection(collection_name)
To Delete collection
collection_name = "collection_name"
collection = client.delete_collection(collection_name)
collection_name = "collection_name"
embedding = {
"id": {
"unique_id": "1"
},
"vector": [0.14, 0.316, 0.433],
"metadata": {
"key1": "value1",
"key2": "value2"
}
}
client.insert_embeddings(
collection_name=collection_name,
vector_id=embedding["id"]['unique_id'],
vector=embedding["vector"],
metadata=embedding["metadata"]
)
To Insert Vectors(batch)
collection_name = "collection_name"
embeddings = [
{
"id": {
"unique_id": "0"
},
"vector": [0.14, 0.316, 0.433],
"metadata": {
"key1": "value1",
"key2": "value2"
}
},
{
"id": {
"unique_id": "1"
},
"vector": [0.27, 0.531, 0.621],
"metadata": {
"key1": "value3",
"key2": "value4"
}
},
{
"id": {
"unique_id": "2"
},
"vector": [0.27, 0.531, 0.621],
"metadata": {
"key1": "value3",
"key2": "value4"
}
}
]
client.batch_insert_embeddings(
collection_name=collection_name,
embeddings = embeddings
)
To Query Vectors.
k = "number-of-items-to query"
collection_name = "collection_name"
query_vector = "query_vector"
# example of query_vector: [0.32654, 0.24423, 0.7655]
# ensure the dimensions match the collection's dimensions
client.query(collection_name, k, query_vector)